Providing Out-of-Band Connectivity to Mission-Critical IT Resources

Home » Improve Network Security » Secure Access Service Edge (SASE)

Lantronix G520: Alternative Options

The G520 is a series of cellular gateways from Lantronix designed for industrial Internet of Things (IIoT), security, and transport use cases. While it provides redundant networking capabilities, it lacks critical resilience features such as out-of-band management (OOBM). This guide explains where the G520 falls short and why it matters before describing alternative options that deliver multi-functional IIoT capabilities and network resilience.

Why consider Lantronix G520 alternatives?

The Lantronix G520 is a cellular gateway that provides network connectivity, failover, and load balancing for IoT devices. However, it lacks serial console management capabilities, which means you need a separate device for remote management and OOBM. Out-of-band management is a crucial technology that separates the network control plane from the data plane to prevent breaches of management interfaces. OOBM also improves resilience by using a dedicated network (like cellular LTE) that gives remote teams a lifeline to recover from equipment failures, network outages, and breaches.

Percepxion G520

G520 gateways are managed with the Percepxion cloud platform, while cellular data plans and VPN security are managed separately with the cloud-based Connectivity Services software. These software solutions cannot be extended with third-party integrations, so teams must manage two separate Lantronix platforms and use separate software for monitoring, security, etc. Closed software also prevents teams from utilizing third-party automation and orchestration and creates a lot of management complexity, increasing the risk of human error and reducing operational efficiency.

G520 hardware also lacks extensibility due to an ARM architecture and tiny 256MB Flash storage. This essentially makes it a single-purpose device, with organizations needing to deploy additional appliances to run edge workloads, security applications, and other third-party software. There’s another IIoT gateway solution that combines edge networking capabilities with OOBM, the ability to run or integrate third-party applications, and a unified, extensible cloud management platform that extends automation and orchestration to all the devices in your deployment.

Nodegrid alternatives for the G520

Nodegrid is a line of vendor-neutral, edge networking solutions from ZPE Systems. The closest alternative to the Lantronix G520 is the Nodegrid Mini Services Router (or Mini SR)

Nodegrid Mini SR vs. Lantronix G520

 

Nodegrid Mini SR

Lantronix G520

CPU

x86-64bit Intel Processor

600 MHz ARM-based CPU 

Guest OS

1

0

Docker Apps

1-2

0

Storage

16GB SED

256MB Flash

Wi-Fi

Yes

Yes

Cloud Management

ZPE Cloud

Lantronix Percepxion, Connectivity Services

Cellular 

Dual-SIM

Dual-SIM

Serial

Via USB

No

Network

2 x 1Gb ETH

1 x 10/100 ETH

The Mini SR is a compact, fanless edge gateway small enough to be easily installed in any industrial environment. In addition to gateway, networking, and failover capabilities, the Mini SR provides OOBM for all connected devices, turning it into an IoT device management solution. Nodegrid’s OOBM completely isolates IoT management interfaces and ensures they’re remotely available 24/7 even during ISP outages and ransomware infections.

Mini-SR-Rear

The Mini SR and all connected devices are managed with ZPE Cloud, an intuitive platform that’s easily extensible with third-party integrations for infrastructure automation, edge security, SCADA software, and much more. The best part is that ZPE Cloud is a unified solution that gives administrators a single-pane-of-glass management experience for convenience and efficiency. 

Mini-SR-Diagram-980×748

The Mini SR and all other Nodegrid hardware solutions run on the vendor-neutral, Linux-based Nodegrid OS and come with robust Intel architectures. As a result, they can host Guest OS and even Docker containers for third-party applications, reducing the need for additional hardware appliances in cramped industrial environments. The Mini SR is an all-in-one solution that reduces edge expenses and complexity while improving resilience and operational efficiency.

Other Nodegrid alternatives for the Lantronix G520

Depending on your use case, you may have other reasons to consider G520 alternatives, such as the need for a complete serial console management solution, or the desire to run artificial intelligence (AI) workflows at the edge without deploying expensive single-purpose GPUs. Luckily, the Nodegrid line has solutions for every edge use case and pain point.

Comparing Nodegrid SRs

Nodegrid Mini SR Nodegrid Gate SR Nodegrid Hive SR Nodegrid Link SR Nodegrid Bold SR Nodegrid Net SR
Potential Use Cases Edge IoT, IIoT, OT, and IoMD (Internet of Medical Devices) deployments Branch service delivery and AI Distributed branch and edge sites like manufacturing plants Branch, IoT, and M2M (Machine-to-Machine) deployments Branch and edge deployments like telecom, retail, and oil & gas Large branches, edge data centers
CPU x86-64bit Intel Processor x86-64bit Intel Processor x86-64bit Intel Processor x86-64bit Intel Processor x86-64bit Intel Processor x86-64bit Intel Processor
Guest OS 1 1-3 1-2 1 1 1-6
Docker Apps 1-2 1-4 1-3 1-2 1-2 1-4
Storage 16GB SED 32GB – 128GB 16GB – 128GB 16GB – 128GB 32GB – 128GB 32GB – 128GB
Secondary Additional Storage Up to 4TB Up to 4TB Up to 4TB Up to 4TB Up to 4TB
PoE+ Output Yes Yes
Wi-Fi Yes Yes Yes Yes Yes Yes
ZPE Cloud Support Yes Yes Yes Yes Yes Yes
Cellular (Dual-SIM) 1 1-2 1-2 1 1-2 1-4
Serial Via USB 8 8 1 8 16-80
Network 2 x 1Gb ETH 2 x SFP+, 5 x Gb ETH, 4 x 1Gb ETH PoE+ 2x GbE ETH, 2x 10 Gbps, 4x 10/100/1000/2.5 Gbps RJ-45 1 x Gb ETH 1 x SFP 5 x Gb ETH 2 1Gb ETH, 2 SFP+, Multiple Cards
GPIO 2 DIO, 1 OUT, 1 Relay 2 DIO, 2 OUT
Power Single Single or Redundant Single Single Single Single or Redundant
Data Sheet Download Download Download Download Download Download

Get a complete IIoT solution with Nodegrid

The Nodegrid Mini SR improves upon the Lantronix G520 by consolidating edge networking capabilities and offering a vendor-neutral platform to host and integrate all your third-party applications. Schedule a demo to see Nodegrid in action!

Edge Computing Platforms: Insights from Gartner’s 2024 Market Guide

Interlocking cogwheels containing icons of various edge computing examples are displayed in front of racks of servers

Edge computing allows organizations to process data close to where it’s generated, such as in retail stores, industrial sites, and smart cities, with the goal of improving operational efficiency and reducing latency. However, edge computing requires a platform that can support the necessary software, management, and networking infrastructure. Let’s explore the 2024 Gartner Market Guide for Edge Computing, which highlights the drivers of edge computing and offers guidance for organizations considering edge strategies.

What is an Edge Computing Platform (ECP)?

Edge computing moves data processing close to where it’s generated. For bank branches, manufacturing plants, hospitals, and others, edge computing delivers benefits like reduced latency, faster response times, and lower bandwidth costs. An Edge Computing Platform (ECP) provides the foundation of infrastructure, management, and cloud integration that enable edge computing. The goal of having an ECP is to allow many edge locations to be efficiently operated and scaled with minimal, if any, human touch or physical infrastructure changes.

Before we describe ECPs in detail, it’s important to first understand why edge computing is becoming increasingly critical to IT and what challenges arise as a result.

What’s Driving Edge Computing, and What Are the Challenges?

Here are the five drivers of edge computing described in Gartner’s report, along with the challenges that arise from each:

1. Edge Diversity

Every industry has its unique edge computing requirements. For example, manufacturing often needs low-latency processing to ensure real-time control over production, while retail might focus on real-time data insights to deliver hyper-personalized customer experiences.

Challenge: Edge computing solutions are usually deployed to address an immediate need, without taking into account the potential for future changes. This makes it difficult to adapt to diverse and evolving use cases.

2. Ongoing Digital Transformation

Gartner predicts that by 2029, 30% of enterprises will rely on edge computing. Digital transformation is catalyzing its adoption, while use cases will continue to evolve based on emerging technologies and business strategies.

Challenge: This rapid transformation means environments will continue to become more complex as edge computing evolves. This complexity makes it difficult to integrate, manage, and secure the various solutions required for edge computing.

3. Data Growth

The amount of data generated at the edge is increasing exponentially due to digitalization. Initially, this data was often underutilized (referred to as the “dark edge”), but businesses are now shifting towards a more connected and intelligent edge, where data is processed and acted upon in real time.

Challenge: Enormous volumes of data make it difficult to efficiently manage data flows and support real-time processing without overwhelming the network or infrastructure.

4. Business-Led Requirements

Automation, predictive maintenance, and hyper-personalized experiences are key business drivers pushing the adoption of edge solutions across industries.

Challenge: Meeting business requirements poses challenges in terms of ensuring scalability, interoperability, and adaptability.

5. Technology Focus

Emerging technologies such as AI/ML are increasingly deployed at the edge for low-latency processing, which is particularly useful in manufacturing, defense, and other sectors that require real-time analytics and autonomous systems.

Challenge: AI and ML make it difficult for organizations to determine how to strike a balance between computing power and infrastructure costs, without sacrificing security.

What Features Do Edge Computing Platforms Need to Have?

To address these challenges, here’s a brief look at three core features that ECPs need to have according to Gartner’s Market Guide:

  1. Edge Software Infrastructure: Support for edge-native workloads and infrastructure, including containers and VMs. The platform must be secure by design.
  2. Edge Management and Orchestration: Centralized management for the full software stack, including orchestration for app onboarding, fleet deployments, data storage, and regular updates/rollbacks.
  3. Cloud Integration and Networking: Seamless connection between edge and cloud to ensure smooth data flow and scalability, with support for upstream and downstream networking.

A simple diagram showing the computing and networking capabilities that can be delivered via Edge Management and Orchestration.

Image: A simple diagram showing the computing and networking capabilities that can be delivered via Edge Management and Orchestration.

  1.  

How ZPE Systems’ Nodegrid Platform Addresses Edge Computing Challenges

ZPE Systems’ Nodegrid is a Secure Service Delivery Platform that meets these needs. Nodegrid covers all three feature categories outlined in Gartner’s report, allowing organizations to host and manage edge computing via one platform. Not only is Nodegrid the industry’s most secure management infrastructure, but it also features a vendor-neutral OS, hypervisor, and multi-core Intel CPU to support necessary containers, VMs, and workloads at the edge. Nodegrid follows isolated management best practices that enable end-to-end orchestration and safe updates/rollbacks of global device fleets. Nodegrid integrates with all major cloud providers, and also features a variety of uplink types, including 5G, Starlink, and fiber, to address use cases ranging from setting up out-of-band access, to architecting Passive Optical Networking.

Here’s how Nodegrid addresses the five edge computing challenges:

1. Edge Diversity: Adapting to Industry-Specific Needs

Nodegrid is built to handle diverse requirements, with a flexible architecture that supports containerized applications and virtual machines. This architecture enables organizations to tailor the platform to their edge computing needs, whether for handling automated workflows in a factory or data-driven customer experiences in retail.

2. Ongoing Digital Transformation: Supporting Continuous Growth

Nodegrid supports ongoing digital transformation by providing zero-touch orchestration and management, allowing for remote deployment and centralized control of edge devices. This enables teams to perform initial setup of all infrastructure and services required for their edge computing use cases. Nodegrid’s remote access and automation provide a secure platform for keeping infrastructure up-to-date and optimized without the need for on-site staff. This helps organizations move much of their focus away from operations (“keeping the lights on”), and instead gives them the agility to scale their edge infrastructure to meet their business goals.

3. Data Growth: Enabling Real-Time Data Processing

Nodegrid addresses the challenge of exponential data growth by providing local processing capabilities, enabling edge devices to analyze and act on data without relying on the cloud. This not only reduces latency but also enhances decision-making in time-sensitive environments. For instance, Nodegrid can handle the high volumes of data generated by sensors and machines in a manufacturing plant, providing instant feedback for closed-loop automation and improving operational efficiency.

4. Business-Led Requirements: Tailored Solutions for Industry Demands

Nodegrid’s hardware and software are designed to be adaptable, allowing businesses to scale across different industries and use cases. In manufacturing, Nodegrid supports automated workflows and predictive maintenance, ensuring equipment operates efficiently. In retail, it powers hyperpersonalization, enabling businesses to offer tailored customer experiences through edge-driven insights. The vendor-neutral Nodegrid OS integrates with existing and new infrastructure, and the Net SR is a modular appliance that allows for hot-swapping of serial, Ethernet, computing, storage, and other capabilities. Organizations using Nodegrid can adapt to evolving use cases without having to do any heavy lifting of their infrastructure.

5. Technology Focus: Supporting Advanced AI/ML Applications

Emerging technologies such as AI/ML require robust edge platforms that can handle complex workloads with low-latency processing. Nodegrid excels in environments where real-time analytics and autonomous systems are crucial, offering high-performance infrastructure designed to support these advanced use cases. Whether processing data for AI-driven decision-making in defense or enabling real-time analytics in industrial environments, Nodegrid provides the computing power and scalability needed for AI/ML models to operate efficiently at the edge.

Read Gartner’s Market Guide for Edge Computing Platforms

As businesses continue to deploy edge computing solutions to manage increasing data, reduce latency, and drive innovation, selecting the right platform becomes critical. The 2024 Gartner Market Guide for Edge Computing Platforms provides valuable insights into the trends and challenges of edge deployments, emphasizing the need for scalability, zero-touch management, and support for evolving workloads.

Click below to download the report.

Get a Demo of Nodegrid’s Secure Service Delivery

Our engineers are ready to walk you through the software infrastructure, edge management and orchestration, and cloud integration capabilities of Nodegrid. Use the form to set up a call and get a hands-on demo of this Secure Service Delivery Platform.

Network Virtualization Platforms: Benefits & Best Practices

Network Virtualization Platforms: Benefits & Best Practices

Simulated network virtualization platforms overlaying physical network infrastructure.

Network virtualization decouples network functions, services, and workflows from the underlying hardware infrastructure and delivers them as software. In the same way that server virtualization makes data centers more scalable and cost-effective, network virtualization helps companies streamline network deployment and management while reducing hardware expenses.

This guide describes several types of network virtualization platforms before discussing the benefits of virtualization and the best practices for improving efficiency, scalability, and ROI.

What do network virtualization platforms do?

There are three forms of network virtualization that are achieved with different types of platforms. These include:

Type of Virtualization Description Examples of Platforms
Virtual Local Area Networking (VLAN) Creates an abstraction layer over physical local networking infrastructure so the company can segment the network into multiple virtual networks without installing additional hardware.

SolarWinds Network Configuration Manager

ManageEngine Network Configuration Manager

Software-Defined Networking (SDN) Decouples network routing and control functions from the actual data packets so that IT teams can deploy and orchestrate workflows across multiple devices and VLANs from one centralized platform.

Meraki

Juniper

Network Functions Virtualization (NFV) Separates network functions like routing, switching, and load balancing from the underlying hardware so teams can deploy them as virtual machines (VMs) and use fewer physical devices.

Red Hat OpenStack

VMware vCloud NFV

While network virtualization is primarily concerned with software, it still requires a physical network infrastructure to serve as the foundation for the abstraction layer (just like server virtualization still requires hardware in the data center or cloud to run hypervisor software). Additionally, the virtualization software itself needs storage or compute resources to run, either on a server/hypervisor or built-in to a networking device like a router or switch. Sometimes, this hardware is also referred to as a network virtualization platform.

The benefits of network virtualization

Virtualizing network services and workflows with VLANs, SDN, and NFVs can help companies:

  • Improve operational efficiency with automation. Network virtualization enables the use of scripts, playbooks, and software to automate workflows and configurations. Network automation boosts productivity so teams can get more work done with fewer resources.
  • Accelerate network deployments and scaling. Legacy deployments involve configuring and installing dedicated boxes for each function. Virtualized network functions and configurations can be deployed in minutes and infinitely copied to get new sites up and running in a fraction of the time.
  • Reduce network infrastructure costs. Decoupling network functions, services, and workflows from the underlying hardware means you can run multiple functions from once device, saving money and space.
  • Strengthen network security. Virtualization makes it easier to micro-segment the network and implement precise, targeted Zero-Trust security controls to protect sensitive and valuable assets.

Network virtualization platform best practices

Following these best practices when selecting and implementing network virtualization platforms can help companies achieve the benefits described above while reducing hassle.

Vendor neutrality

Ensuring that the virtualization software works with the underlying hardware is critical. The struggle is that many organizations use devices from multiple vendors, which makes interoperability a challenge. Rather than using different virtualization platforms for each vendor, or replacing perfectly good devices with ones that are all from the same vendor, it’s much easier and more cost-effective to use virtualization software that interoperates with any networking hardware. This type of software is called ‘vendor neutral.’

To improve efficiency even more, companies can use vendor-neutral networking hardware to host their virtualization software. Doing so eliminates the need for a dedicated server, allowing SDN software and virtualized network functions (VNFs) to run directly from a serial console or router that’s already in use. This significantly consolidates deployments, which saves  money and reduces the amount of space needed This can be a lifesaver in branch offices, retail stores, manufacturing sites, and other locations with limited space.

A diagram showing how multiple VNFs can run on a single vendor-neutral platform.

Virtualizing the WAN

We’ve mostly discussed virtualization in a local networking context, but it can also be extended to the WAN (wide area network). For example, SD-WAN (software-defined wide area networking) streamlines and automates the management of WAN infrastructure and workflows. WAN gateway routing functions can also be virtualized as VNFs that are deployed and controlled independently of the physical WAN gateway, significantly accelerating new branch launches.

Unifying network orchestration

The best way to maximize network management efficiency is to consolidate the orchestration of all virtualization with a single, vendor-neutral platform. For example, the Nodegrid solution from ZPE Systems uses vendor-neutral hardware and software to give networking teams a single platform to host, deploy, monitor, and control all virtualized workflows and devices. Nodegrid streamlines network virtualization with:

  • An open, x86-64bit Linux-based architecture that can run other vendors’ software, VNFs, and even Docker containers to eliminate the need for dedicated virtualization appliances.
  • Multi-functional hardware devices that combine gateway routing, switching, out-of-band serial console management, and more to further consolidate network deployments.
  • Vendor-neutral orchestration software, available in on-premises or cloud form, that provides unified control over both physical and virtual infrastructure across all deployment sites for a convenient management experience.

Want to see vendor-neutral network orchestration in action?

Nodegrid unifies network virtualization platforms and workflows to boost productivity while reducing infrastructure costs. Schedule a free demo to experience the benefits of vendor-neutral network orchestration firsthand.

Schedule a Demo

Benefits of Edge Computing

An illustration showing various use cases and benefits of edge computing

Edge computing delivers data processing and analysis capabilities to the network’s “edge,” at remote sites like branch offices, warehouses, retail stores, and manufacturing plants. It involves deploying computing resources and lightweight applications very near the devices that generate data, reducing the distance and number of network hops between them. In doing so, edge computing reduces latency and bandwidth costs while mitigating risk, enhancing edge resilience, and enabling real-time insights. This blog discusses the five biggest benefits of edge computing, providing examples and additional resources for companies beginning their edge journey.
.

5 benefits of edge computing​

Edge Computing:

Description

Reduces latency

Leveraging data at the edge reduces network hops and latency to improve speed and performance.

Mitigates risk

Keeping data on-site at distributed edge locations reduces the chances of interception and limits the blast radius of breaches.

Lowers bandwidth costs

Reducing edge data transmissions over expensive MPLS lines helps keep branch costs low.

Enhances edge resilience

Analyzing data on-site ensures that edge operations can continue uninterrupted during ISP outages and natural disasters.

Enables real-time insights

Eliminating off-site processing allows companies to use and extract value from data as soon as it’s generated.

1. Reduces latency

Edge computing leverages data on the same local network as the devices that generate it, cutting down on edge data transmissions over the WAN or Internet. Reducing the number of network hops between devices and applications significantly decreases latency, improving the speed and performance of business intelligence apps, AIOps, equipment health analytics, and other solutions that use edge data.

Some edge applications run on the devices themselves, completely eliminating network hops and facilitating real-time, lag-free analysis. For example, an AI-powered surveillance application installed on an IoT security camera at a walk-up ATM can analyze video feeds in real-time and alert security personnel to suspicious activity as it occurs.​

 

Read more examples of how edge computing improves performance in our guide to the Applications of Edge Computing.

2. Mitigates risk

Edge computing mitigates security and compliance risks by distributing an organization’s sensitive data and reducing off-site transmission. Large, centralized data stores in the cloud or data center are prime targets for cybercriminals because the sheer volume of data involved increases the chances of finding something valuable. Decentralizing data in much smaller edge storage solutions makes it harder for hackers to find the most sensitive information and also limits how much data they can access at one time.

Keeping data at the edge also reduces the chances of interception in transit to cloud or data center storage. Plus, unlike in the cloud, an organization maintains complete control over who and what has access to sensitive data, aiding in compliance with regulations like the GDPR and PCI DSS 4.0.
.

To learn how to protect edge data and computing resources, read Comparing Edge Security Solutions.

3. Lowers bandwidth costs

Many organizations use MPLS (multi-protocol label switching) links to securely connect edge sites to the enterprise network. MPLS bandwidth is much more expensive than regular Internet lines, which makes transmitting edge data to centralized data processing applications extremely costly. Plus, it can take months to provision MPLS at a new site, delaying launches and driving up overhead expenses.

Edge computing significantly reduces MPLS bandwidth utilization by running data-hungry applications on the local network, reserving the WAN for other essential traffic. Combining edge computing with SD-WAN (software-defined wide area networking) and SASE (secure access service edge) technologies can markedly decrease the reliance on MPLS links, allowing organizations to accelerate branch openings and see faster edge ROIs.
.

Learn more about cost-effective edge deployments in our Edge Computing Architecture Guide.

4. Enhances edge resilience

Since edge computing applications run on the same LAN as the devices generating data, they can continue to function even if the site loses Internet access due to an ISP outage, natural disaster, or other adverse event. This also allows uninterrupted edge operations in locations with inconsistent (or no) Internet coverage, like offshore oil rigs, agricultural sites, and health clinics in isolated rural communities. Edge computing ensures that organizations don’t miss any vital health or safety alerts and facilitates technological innovation using AI and other data analytics tools in challenging environments..
.

For more information on operational resilience, read Network Resilience: What is a Resilience System?

5. Enables real-time insights

Sending data from the edge to a cloud or on-premises data lake for processing, transformation, and ingestion by analytics or AI/ML tools takes time, preventing companies from acting on insights at the moment when they’re most useful. Edge computing applications start using data as soon as it’s generated, so organizations can extract value from it right away. For example, a retail store can use edge computing to gain actionable insights on purchasing activity and customer behavior in real-time, so they can move in-demand products to aisle endcaps or staff extra cashiers as needed.
.

To learn more about the potential uses of edge computing technology, read Edge Computing Examples.

Simplify your edge computing deployment with Nodegrid

The best way to achieve the benefits of edge computing described above without increasing management complexity or hardware overhead is to use consolidated, vendor-neutral solutions to host, connect, and secure edge workloads. For example, the Nodegrid Gate SR from ZPE Systems delivers an entire stack of edge networking and infrastructure management technologies in a single, streamlined device. The open, Linux-based Nodegrid OS supports VMs and containers for third-party applications, with an Nvidia Jetson Nano card capable of running AI workloads alongside non-AI data analytics for ultimate efficiency.

Improve your edge computing deployment with Nodegrid

Nodegrid consolidates edge computing deployments to improve operational efficiency without sacrificing performance or functionality. Schedule a free demo to see Nodegrid in action.

Schedule a Demo

Improving Your Zero Trust Security Posture

Zero Trust for the Edge(1)

The current cyber threat landscape is daunting, with attacks occurring so frequently that security experts recommend operating under the assumption that your network is already breached. Major cyber attacks – and the disruptions they cause – frequently make news headlines. The MGM hack, LendingTree breach, and CDK Global attack are just a few examples that affected thousands of people per incident and now have many organizations rethinking their resilience strategies.

The zero trust security methodology outlines the best practices for limiting the blast radius of a successful breach by preventing malicious actors from moving laterally through the network and accessing the most valuable or sensitive resources. Many organizations have already begun their zero trust journey by implementing role-based access controls (RBAC), multi-factor authentication (MFA), and other security solutions, but still struggle with coverage gaps that result in ransomware attacks and other disruptive breaches. This blog provides advice for improving your zero trust security posture with a multi-layered strategy that mitigates weaknesses for complete coverage.

How to improve your zero trust security posture

.

Strategy

Description

Gain a full understanding of your protect surface

Use automated discovery tools to identify all the data, assets, applications, and services that an attacker could potentially target.

Micro-segment your network with micro-perimeters

Implement specific policies, controls, and trust verification mechanisms to mitigate and protect surface vulnerabilities.

Isolate and defend your management infrastructure

Use OOB management and hardware security to prevent attackers from compromising the control plane.

Defend your cloud resources

Understand the shared responsibility model and use cloud-specific tools like a CASB to prevent shadow IT and enforce zero trust.

Extend zero trust to the edge

Use edge-centric solutions like SASE to extend zero trust policies and controls to remote network traffic, devices, and users.

Gain a full understanding of your protect surface

Many security strategies focus on defending the network’s “attack surface,” or all the potential vulnerabilities an attacker could exploit to breach the network. However, zero trust is all about defending the “protect surface,” or all the data, assets, applications, and services that an attacker could potentially try to access. The key difference is that zero trust doesn’t ask you to try to cover any possible weakness in a network, which is essentially impossible. Instead, it wants you to look at the resources themselves to determine what has the most value to an attacker, and then implement security controls that are tailored accordingly.

Gaining a full understanding of all the resources on your network can be extraordinarily challenging, especially with the proliferation of SaaS apps, mobile devices, and remote workforces. There are automated tools that can help IT teams discover all the data, apps, and devices on the network. Application discovery and dependency mapping (ADDM) tools help identify all on-premises software and third-party dependencies; cloud application discovery tools do the same for cloud-hosted apps by monitoring network traffic to cloud domains. Sensitive data discovery tools scan all known on-premises or cloud-based resources for personally identifiable information (PII) and other confidential data, and there are various device management solutions to detect network-connected hardware, including IoT devices.
,

  • Tip: This step can’t be completed one time and then forgotten – teams should execute discovery processes on a regular, scheduled basis to limit gaps in protection. 

Micro-segment your network with micro-perimeters

Micro-segmentation is a cornerstone of zero-trust networks. It involves logically separating all the data, applications, assets, and services according to attack value, access needs, and interdependencies. Then, teams implement granular security policies and controls tailored to the needs of each segment, establishing what are known as micro-perimeters. Rather than trying to account for every potential vulnerability with one large security perimeter, teams can just focus on the tools and policies needed to cover the specific vulnerabilities of a particular micro-segment.

Network micro-perimeters help improve your zero trust security posture with:

  • Granular access policies granting the least amount of privileges needed for any given workflow. Limiting the number of accounts with access to any given resource, and limiting the number of privileges granted to any given account, significantly reduces the amount of damage a compromised account (or malicious actor) is capable of inflicting.
  • Targeted security controls addressing the specific risks and vulnerabilities of the resources in a micro-segment. For example, financial systems need stronger encryption, strict data governance monitoring, and multiple methods of trust verification, whereas an IoT lighting system requires simple monitoring and patch management, so the security controls for these micro-segments should be different.
  • Trust verification using context-aware policies to catch accounts exhibiting suspicious behavior and prevent them from accessing sensitive resources. If a malicious outsider compromises an authorized user account and MFA device – or a disgruntled employee uses their network privileges to harm the company – it can be nearly impossible to prevent data exposure. Context-aware policies can stop a user from accessing confidential resources outside of typical operating hours, or from unfamiliar IP addresses, for example. Additionally, user entity and behavior analytics (UEBA) solutions use machine learning to detect other abnormal and risky behaviors that could indicate malicious intent.

Isolate and defend your management infrastructure

For zero trust to be effective, organizations must apply consistently strict security policies and controls to every component of their network architecture, including the management interfaces used to control infrastructure. Otherwise, a malicious actor could use a compromised sysadmin account to hijack the control plane and bring down the entire network.

According to a recent CISA directive, the best practice is to isolate the network’s control plane so that management interfaces are inaccessible from the production network. Many new cybersecurity regulations, including PCI DSS 4.0, DORA, NIS2, and the CER Directive, also either strongly recommend or require management infrastructure isolation.

Isolated management infrastructure (IMI) prevents compromised accounts, ransomware, and other threats from moving laterally to or from the production LAN. It gives teams a safe environment to recover from ransomware or other cyberattacks without risking reinfection, which is known as an isolated recovery environment (IRE). Management interfaces and the IRE should also be protected by granular, role-based access policies, multi-factor authentication, and strong hardware roots of trust to further mitigate risk.

A diagram showing how to use Nodegrid Gen 3 OOB to enable IMI.The easiest and most secure way to implement IMI is with Gen 3 out-of-band (OOB) serial console servers, like the Nodegrid solution from ZPE Systems. These devices use alternative network interfaces like 5G/4G LTE cellular to ensure complete isolation and 24/7 management access even during outages. They’re protected by hardware security features like TPM 2.0 and GPS geofencing, and they integrate with zero trust solutions like identity and access management (IAM) and UEBA to enable consistent policy enforcement.

Defend your cloud resources

The vast majority of companies host some or all of their workflows in the cloud, which significantly expands and complicates the attack surface while making it more challenging to identify and defend the protect surface. Some organizations also lack a complete understanding of the shared responsibility model for varying cloud services, increasing the chances of coverage gaps. Additionally, many orgs struggle with “shadow IT,” which occurs when individual business units implement cloud applications without going through onboarding, preventing security teams from applying zero trust controls.

The first step toward improving your zero trust security posture in the cloud is to ensure you understand where your cloud service provider’s responsibilities end and yours begin. For instance, most SaaS providers handle all aspects of security except IAM and data protection, whereas IaaS (Infrastructure-as-a-Service) providers are only responsible for protecting their physical and virtual infrastructure.

It’s also vital that security teams have a complete picture of all the cloud services in use by the organization and a way to deploy and enforce zero trust policies in the cloud. For example, a cloud access security broker (CASB) is a solution that discovers all the cloud services in use by an organization and allows teams to monitor and manage security for the entire cloud architecture. A CASB provides capabilities like data governance, malware detection, and adaptive access controls, so organizations can protect their cloud resources with the same techniques used in the on-premises environment.
.

Example Cloud Access Security Broker Capabilities

Visibility

Compliance

Threat protection

Data security

Cloud service discovery

Monitoring and reporting

User authentication and authorization

Data governance and loss prevention

Malware (e.g., virus, ransomware) detection

User and entity behavior analytics (UEBA)

Data encryption and  tokenization

Data leak prevention

Extend zero trust to the edge

Modern enterprise networks are highly decentralized, with many business operations taking place at remote branches, Internet of Things (IoT) deployment sites, and end-users’ homes. Extending security controls to the edge with on-premises zero trust solutions is very difficult without backhauling all remote traffic through a centralized firewall, which creates bottlenecks that affect performance and reliability. Luckily, the market for edge security solutions is rapidly growing and evolving to help organizations overcome these challenges. 

Security Access Service Edge (SASE) is a type of security platform that delivers core capabilities as a managed, typically cloud-based service for the edge. SASE uses software-defined wide area networking (SD-WAN) to intelligently and securely route edge traffic through the SASE tech stack, allowing the application and enforcement of zero trust controls. In addition to CASB and next-generation firewall (NGFW) features, SASE usually includes zero trust network access (ZTNA), which offers VPN-like functionality to connect remote users to enterprise resources from outside the network. ZTNA is more secure than a VPN because it only grants access to one app at a time, requiring separate authorization requests and trust verification attempts to move to different resources. 

Accelerating the zero trust journey

Zero trust is not a single security solution that you can implement once and forget about – it requires constant analysis of your security posture to identify and defend weaknesses as they arise. The best way to ensure adaptability is by using vendor-agnostic platforms to host and orchestrate zero trust security. This will allow you to add and change security services as needed without worrying about interoperability issues.

For example, the Nodegrid platform from ZPE Systems includes vendor-neutral serial consoles and integrated branch services routers that can host third-party software such as SASE and NGFWs. These devices also provide Gen 3 out-of-band management for infrastructure isolation and network resilience. Nodegrid protects management interfaces with strong hardware roots-of-trust, embedded firewalls, SAML 2.0 integrations, and other zero trust security features. Plus, with Nodegrid’s cloud-based or on-premises management platform, teams can orchestrate networking, infrastructure, and security workflows across the entire enterprise architecture.

 

Improve your zero trust security posture with Nodegrid

Using Nodegrid as the foundation for your zero trust network infrastructure ensures maximum agility while reducing management complexity. Watch a Nodegrid demo to learn more.

Schedule a Demo

Comparing Edge Security Solutions

A user at an edge site with a virtual overlay of SASE and related edge security concepts
The continuing trend of enterprise network decentralization to support Internet of Things (IoT) deployments, automation, and edge computing is resulting in rapid growth for the edge security market. Recent research predicts it will reach $82.4 billion by 2031 at a compound annual growth rate (CAGR) of 19.7% from 2024.

Edge security solutions decentralize the enterprise security stack, delivering key firewall capabilities to the network’s edges. This prevents companies from funneling all edge traffic through a centralized data center firewall, reducing latency and improving overall performance.

This guide compares the most popular edge security solutions and offers recommendations for choosing the right vendor for your use case.

Executive summary

There are six single-vendor SASE solutions offering the best combination of features and capabilities for their targeted use cases.
.

Single-Vendor SASE Product

Key Takeaways

Palo Alto Prisma SASE

Prisma SASE’s advanced feature set, high price tag, and granular controls make it well-suited to larger enterprises with highly distributed networks, complex edge operations, and personnel with previous SSE and SD-WAN experience.

Zscaler Zero Trust SASE

Zscaler offers fewer security features than some of the other vendors on the list, but its capabilities and feature roadmap align well with the requirements of many enterprises, especially those with large IoT and operational technology (OT) deployments.

Netskope ONE

Netskope ONE’s flexible options allow mid-sized companies to take advantage of advanced SASE features without paying a premium for the services they don’t need, though the learning curve may be a bit steep for inexperienced teams.

Cisco

Cisco Secure Connect makes SASE more accessible to smaller, less experienced IT teams, though its high price tag could be prohibitive to these companies. Cisco’s unmanaged SASE solutions integrate easily with existing Cisco infrastructures, but they offer less flexibility in the choice of features than other options on this list.

Forcepoint ONE

Forcepoint’s data-focused platform and deep visibility make it well-suited for organizations with complicated data protection needs, such as those operating in the heavily regulated healthcare, finance, and defense industries. However, Forcepoint ONE has a steep learning curve, and integrating other services can be challenging. 

Fortinet FortiSASE

FortiSASE provides comprehensive edge security functionality for large enterprises hoping to consolidate their security operations with a single platform. However, the speed of some dashboards and features – particularly those associated with the FortiMonitor DEM software – could be improved for a better administrative experience.

The best edge security solution for Gen 3 out-of-band (OOB) management, which is critical for infrastructure isolation, resilience, and operational efficiency, is Nodegrid from ZPE Systems. Nodegrid provides secure hardware and software to host other vendors’ tools on a secure, Gen 3 OOB network. It creates a control plane for edge infrastructure that’s completely isolated from breaches on the production network and consolidates an entire edge networking stack into a single solution. Disclaimer: This comparison was written by a third party in collaboration with ZPE Systems using publicly available information gathered from data sheets, admin guides, and customer reviews on sites like Gartner Peer Insights, as of 6/09/2024. Please email us if you have corrections or edits, or want to review additional attributes, at matrix@zpesystems.com.

What are edge security solutions?

Edge security solutions primarily fall into one (or both) of two categories:

  • Security Service Edge (SSE) solutions deliver core security features as a managed service. SSE does not come with any networking capabilities, so companies still need a way to securely route edge traffic through the (often cloud-based) security stack. This usually involves software-defined wide area networking (SD-WAN), which was traditionally a separate service that had to be integrated with the SSE stack.
  • Secure Access Service Edge (SASE) solutions package SSE together with SD-WAN, preventing companies from needing to deploy and manage multiple vendor solutions.

All the top SSE providers now offer fully integrated SASE solutions with SD-WAN. SASE’s main tech stack is in the cloud, but organizations must install SD-WAN appliances at each branch or edge data center. SASE also typically uses software agents deployed at each site and, in some cases, on all edge devices. Some SASE vendors also sell physical appliances, while others only provide software licenses for virtualized SD-WAN solutions. A third category of edge security solutions offers a secure platform to run other vendors’ SD-WAN and SASE software. These solutions also provide an important edge security capability: management network isolation. This feature ensures that ransomware, viruses, and malicious actors can’t jump from compromised IoT devices to the management interfaces used to control vital edge infrastructure.

Comparing edge security solutions

Palo Alto Prisma SASE

A screenshot from the Palo Alto Prisma SASE solution. Palo Alto Prisma was named a Leader in Gartner’s 2023 SSE Magic Quadrant for its ability to deliver best-in-class security features. Prisma SASE is a cloud-native, AI-powered solution with the industry’s first native Autonomous Digital Experience Management (ADEM) service. Prisma’s ADEM has built-in AIOps for automatic incident detection, diagnosis, and remediation, as well as self-guided remediation to streamline the end-user experience. Prisma SASE’s advanced feature set, high price tag, and granular controls make it well-suited to larger enterprises with highly distributed networks, complex edge operations, and personnel with previous SSE and SD-WAN experience.

Palo Alto Prisma SASE Capabilities:

  • Zero Trust Network Access (ZTNA) 2.0 – Automated app discovery, fine-grained access controls, continuous trust verification, and deep security inspection.
  • Cloud Secure Web Gateway (SWG) – Inline visibility and control of web and SaaS traffic.
  • Next-Gen Cloud Access Security Broker (CASB) – Inline and API-based security controls and contextual policies.
  • Remote Browser Isolation (RBI) – Creates a secure isolation channel between users and remote browsers to prevent web threats from executing on their devices.
  • App acceleration – Application-aware routing to improve “first-mile” connection performance.
  • Prisma Access Browser – Policy management for edge devices.
  • Firewall as a Service (FWaaS) – Advanced threat protection, URL filtering, DNS security, and other next-generation firewall (NGFW) features.
  • Prisma SD-WAN – Elastic networks, app-defined fabric, and Zero Trust security.

Zscaler Zero Trust SASE

Zscaler is another 2023 SSE Magic Quadrant Leader offering a robust single-vendor SASE solution based on its Zero Trust ExchangeTM platform. Zscaler SASE uses artificial intelligence to boost its SWG, firewall, and DEM capabilities. It also offers IoT device management and OT privileged access management, allowing companies to secure unmanaged devices and provide secure remote access to industrial automation systems and other operational technology. Zscaler offers fewer security features than some of the other vendors on the list, but its capabilities and future roadmap align well with the requirements of many enterprises, especially those with large IoT and operational technology deployments.

Zscaler Zero Trust SASE Capabilities:

  • Zscaler Internet AccessTM (ZIA) SWG cyberthreat protection and zero-trust access to SaaS apps and the web.
  • Zscaler Private AccessTM (ZPA) ZTNA connectivity to private apps and OT devices.
  • Zscaler Digital ExperienceTM (ZDX) –  DEM with Microsoft Copilot AI to streamline incident management.
  • Zscaler Data Protection CASB/DLP secures edge data across platforms.
  • IoT device visibility – IoT device, server, and unmanaged user device discovery, monitoring, and management.
  • Privileged OT access – Secure access management for third-party vendors and remote user connectivity to OT systems.
  • Zero Trust SD-WAN – Works with the Zscaler Zero Trust Exchange platform to secure edge and branch traffic.

Netskope ONE

Netskope is the only 2023 SSE Magic Quadrant Leader to offer a single-vendor SASE targeted to mid-market companies with smaller budgets as well as larger enterprises. The Netskope ONE platform provides a variety of security features tailored to different deployment sizes and requirements, from standard SASE offerings like ZTNA and CASB to more advanced capabilities such as AI-powered threat detection and user and entity behavior analytics (UEBA). Netskope ONE’s flexible options allow mid-sized companies to take advantage of advanced SASE features without paying a premium for the services they don’t need, though the learning curve may be a bit steep for inexperienced teams.

Netskope ONE Capabilities:

  • Next-Gen SWG Protection for cloud services, applications, websites, and data.
  • CASB Security for both managed and unmanaged cloud applications.
  • ZTNA Next –  ZTNA with integrated software-only endpoint SD-WAN.
  • Netskope Cloud Firewall (NCF) Outbound network traffic security across all ports and protocols.
  • RBI – Isolation for uncategorized and risky websites.
  • SkopeAI – AI-powered threat detection, UEBA, and DLP
  • Public Cloud Security – Visibility, control, and compliance for multi-cloud environments.
  • Advanced analytics – 360-degree risk analysis.
  • Cloud Exchange – Multi-cloud integration tools.
  • DLP – Sensitive data discovery, monitoring, and protection.
  • Device intelligence – Zero trust device discovery, risk assessment, and management.
  • Proactive DEM – End-to-end visibility and real-time insights.
  • SaaS security posture management – Continuous monitoring and enforcement of SaaS security settings, policies, and best practices.
  • Borderless SD-WAN – Zero trust connectivity for edge, branch, cloud, remote users, and IoT devices.

Cisco

Cisco is one of the only edge security vendors to offer SASE as a managed service for companies with lean IT operations and a lack of edge networking experience. Cisco Secure Connect SASE-as-a-service includes all the usual SSE capabilities, such as ZTNA, SWG, and CASB, as well as native Meraki SD-WAN integration and a generative AI assistant. Cisco also provides traditional SASE by combining Cisco Secure Access SSE – which includes the Cisco Umbrella Secure Internet Gateway (SIG) – with Catalyst SD-WAN. Cisco Secure Connect makes SASE more accessible to smaller, less experienced IT teams, though its high price tag could be prohibitive to these companies. Cisco’s unmanaged SASE solutions integrate easily with existing Cisco infrastructures, but they offer less flexibility in the choice of features than other options on this list.

Cisco Secure Connect SASE-as-a-Service Capabilities:

  • Clientless ZTNA
  • Client-based Cisco AnyConnect secure remote access
  • SWG
  • Cloud-delivered firewall
  • DNS-layer security
  • CASB
  • DLP
  • SAML user authentication
  • Generative AI assistant
  • Network interconnect intelligent routing
  • Native Meraki SD-WAN integration
  • Unified management

Cisco Secure Access SASE Capabilities

  • ZTNA 
  • SWG
  • CASB
  • DLP
  • FWaaS
  • DNS-layer security
  • Malware protection
  • RBI
  • Catalyst SD-WAN

Forcepoint ONE

A screenshot from the Forcepoint ONE SASE solution. Forcepoint ONE is a cloud-native single-vendor SASE solution placing a heavy emphasis on edge and multi-cloud visibility. Forcepoint ONE aggregates live telemetry from all Forcepoint security solutions and provides visualizations, executive summaries, and deep insights to help companies improve their security posture. Forcepoint also offers what they call data-first SASE, focusing on protecting data across edge and cloud environments while enabling seamless access for authorized users from anywhere in the world. Forcepoint’s data-focused platform and deep visibility make it well-suited for organizations with complicated data protection needs, such as those operating in the heavily regulated healthcare, finance, and defense industries. However, Forcepoint ONE has a steep learning curve, and integrating other services can be challenging.

Forcepoint ONE Capabilities:

  • CASB – Access control and data security for over 800,000 cloud apps on managed and unmanaged devices.
  • ZTNA – Secure remote access to private web apps.
  • SWG – Includes RBI, content disarm & reconstruction (CDR), and a cloud firewall.
  • Data Security – A cloud-native DLP to help enforce compliance across clouds, apps, emails, and endpoints.
  • Insights – Real-time analysis of live telemetry data from Forcepoint ONE security products.
  • FlexEdge SD-WAN – Secure access for branches and remote edge sites.

Fortinet FortiSASE

Fortinet’s FortiSASE platform combines feature-rich, AI-powered NGFW security functionality with SSE, digital experience monitoring, and a secure SD-WAN solution. Fortinet’s SASE offering includes the FortiGate NGFW delivered as a service, providing access to FortiGuard AI-powered security services like antivirus, application control, OT security, and anti-botnet protection. FortiSASE also integrates with the FortiMonitor DEM SaaS platform to help organizations optimize endpoint application performance. FortiSASE provides comprehensive edge security functionality for large enterprises hoping to consolidate their security operations with a single platform. However, the speed of some dashboards and features – particularly those associated with the FortiMonitor DEM software – could be improved for a better administrative experience.

Fortinet FortiSASE Capabilities:

  • Antivirus – Protection from the latest polymorphic attacks, ransomware, viruses, and other threats.
  • DLP – Prevention of intentional and accidental data leaks.
  • AntiSpam – Multi-layered spam email filtering.
  • Application Control – Policy creation and management for enterprise and cloud-based applications.
  • Attack Surface Security – Security Fabric infrastructure assessments based on major security and compliance frameworks.
  • CASB – Inline and API-based cloud application security.
  • DNS Security – DNS traffic visibility and filtering.
  • IPS – Deep packet inspection (DPI) and SSL inspection of network traffic.
  • OT Security – IPS for OT systems including ICS and SCADA protocols.
  • AI-Based Inline Malware Prevention – Real-time protection against zero-day exploits and sophisticated, novel threats.
  • URL Filtering – AI-powered behavior analysis and correlation to block malicious URLs.
  • Anti-Botnet and C2 – Prevention of unauthorized communication attempts from compromised remote servers.
  • FortiMonitor DEM – SaaS-based digital experience monitoring.
  • Secure SD-WAN – On-premises and cloud-based SD-WAN integrated into the same OS as the SSE security solutions.

Edge isolation and security with ZPE Nodegrid

The Nodegrid platform from ZPE Systems is a different type of edge security solution, providing secure hardware and software to host other vendors’ tools on a secure, Gen 3 out-of-band (OOB) management network. Nodegrid integrated branch services routers use alternative network interfaces (including 5G/4G LTE) and serial console technology to create a control plane for edge infrastructure that’s completely isolated from breaches on the production network. It uses hardware security features like secure boot and geofencing to prevent physical tampering, and it supports strong authentication methods and SAML integrations to protect the management network. A screenshot from the Forcepoint ONE SASE solution. Nodegrid’s OOB also ensures remote teams have 24/7 access to manage, troubleshoot, and recover edge deployments even during a major network outage or ransomware infection. Plus, Nodegrid’s ability to host Guest OS, including Docker containers and VNFs, allows companies to consolidate an entire edge networking stack in a single platform. Nodegrid devices like the Gate SR with Nvidia Jetson Nano can even run edge computing and AI/ML workloads alongside SASE. .

ZPE Nodegrid Edge Security Capabilities

  • Vendor-neutral platform – Hosting for third-party applications and services, including Docker containers and virtualized network functions.
  • Gen 3 OOB – Management interface isolation and 24/7 remote access during outages and breaches.
  • Branch networking – Routing and switching, VNFs, and software-defined branch networking (SD-Branch).
  • Secure boot – Password-protected BIO/Grub and signed software.
  • Latest kernel & cryptographic modules – 64-bit OS with current encryption and frequent security patches.
  • SSO with SAML, 2FA, & remote authentication – Support for Duo, Okta, Ping, and ADFS.
  • Geofencing – GPS tracking with perimeter crossing detection.
  • Fine-grain authorization – Role-based access control.
  • Firewall – Native IPSec & Fail2Ban intrusion prevention and third-party extensibility.
  • Tampering protection – Configuration checksum and change detection with a configuration ‘reset’ button.
  • TPM encrypted storage – Software encryption for SSD hardware storage.

Deploy edge security solutions on the vendor-neutral Nodegrid OOB platform

Nodegrid’s secure hardware and vendor-neutral OS make it the perfect platform for hosting other vendors’ SSE, SD-WAN, and SASE solutions. Reach out today to schedule a free demo.

Schedule a Demo